Removable interpenetrating network enables highly-responsive 2-D photonic crystal hydrogel sensors.

نویسندگان

  • Andrew E Coukouma
  • Natasha L Smith
  • Sanford A Asher
چکیده

Responsive hydrogels functionalized with molecular recognition agents can undergo large volume changes upon interactions with specific chemical species. These responsive hydrogels can function as chemical sensing materials if the hydrogel volumes are monitored by using devices such as photonic crystals (PhC). An important criterion of merit is the responsiveness of these sensing hydrogels. Generally, hydrogel responsiveness is inversely proportional to the hydrogel crosslink density because the elastic constants scale with the crosslink density. The responsivities of these hydrogel sensors dramatically increase as their hydrogel crosslinker concentrations decrease. Unfortunately, the resulting highly responsive hydrogels become fragile at low crosslink densities, and are hard to fabricate and utilize. To temporarily increase the mechanical strengths of these highly responsive hydrogels we developed a method to incorporate a removable reinforcing interpenetrating hydrogel network. We demonstrate the utility of this approach by incorporating an interpenetrating PVA hydrogel within a weak, low crosslinked pH sensitive hydrogel through a freeze-thaw process. These interpenetrating PVA hydrogels are indefinitely stable at room temperature, but easily dissolved on transient heating to 70 °C. The pH sensing hydrogel response is unaffected by this incorporation and subsequent dissolution of the interpenetrating PVA hydrogel. These sacrificial hydrogels enable the fabrication and utilization of highly responsive hydrogel sensing materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photonic crystal protein hydrogel sensor materials enabled by conformationally induced volume phase transition

Hydrogels that change volume in response to specific molecular stimuli can serve as platforms for sensors, actuators and drug delivery devices. There is great interest in designing intelligent hydrogels for tissue engineering, drug delivery, and microfluidics that utilize protein binding specificities and conformational changes. Protein conformational change induced by ligand binding can cause ...

متن کامل

Enabling Thermoreversible Physically Cross-Linked Polymerized Colloidal Array Photonic Crystals.

We physically cross-linked a thermoreversible poly(vinyl alcohol) (PVA) hydrogel (TG) within a crystalline colloidal array (CCA) to form an enabling photonic crystal material. The TG consists of a physically cross-linked network formed in a process reminiscent of the well-known freeze-thaw physically cross-linking process, but which avoids solvent freezing which invariably disorders the CCA. Th...

متن کامل

Responsive Photonic Crystal Carbohydrate Hydrogel Sensor Materials for Selective and Sensitive Lectin Protein Detection.

Lectin proteins, such as the highly toxic lectin protein, ricin, and the immunochemically important lectin, jacalin, play significant roles in many biological functions. It is highly desirable to develop a simple but efficient method to selectively detect lectin proteins. Here we report the development of carbohydrate containing responsive hydrogel sensing materials for the selective detection ...

متن کامل

Poly(vinyl alcohol) Rehydratable Photonic Crystal Sensor Materials.

We developed a new photonic crystal hydrogel material based on the biocompatible polymer poly (vinyl alcohol) (PVA), which can be reversibly dehydrated and rehydrated, without the use of additional fillers, while retaining the diffraction and swelling properties of polymerized crystalline colloidal arrays (PCCA). This chemically modified PVA hydrogel photonic crystal efficiently diffracts light...

متن کامل

Two-dimensional photonic crystal chemical and biomolecular sensors.

We review recent progress in the development of two-dimensional (2-D) photonic crystal (PC) materials for chemical and biological sensing applications. Self-assembly methods were developed in our laboratory to fabricate 2-D particle array monolayers on mercury and water surfaces. These hexagonal arrays strongly forward Bragg diffract light to report on their array spacings. By embedding these 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 140 19  شماره 

صفحات  -

تاریخ انتشار 2015